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Abstract

The initiative to reduce the Air Force’s serious pilot shortage led to the Pilot

Training Next (PTN) program. Under PTN, student pilots progress at an individual

rate while making increased use of simulator-based training resources. A previous

thesis used data from the first PTN class to conceptualize and prototype a student

training flight scheduler. This scheduler did not consider training events required

to bring students back to achieved levels of performance if in fact that student per-

formance had regressed. This thesis examines three classes of PTN student data to

determine whether student regression in training progression can be detected. A vi-

sual, a statistical, and a machine learning-based method are examined and found to

not predict training regression in PTN student pilots.
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AN EXAMINATION OF POTENTIAL TRAINING REGRESSION

RECOGNITION ALGORITHMS FOR PILOT TRAINING NEXT

I. Introduction

The Air Force has been unable to train a sufficient number of pilots to meet op-

erational demands Robbert et al. (2015). The Pilot Training Next (PTN) program

seeks to address the problem through personalized, simulator-based training. Stu-

dents in the PTN program have around the clock access to simulators and do not

follow a rigid curriculum. This allows students to progress at their own pace and

finish training sooner than they would in the traditional undergraduate pilot training

(UPT) program.

However, this increased personalization facilitated by PTN requires instructor

pilots (IP) to spend an inordinate amount of time on administrative tasks such as

developing and organizing flight plans for students. It also induces subjectivity in

evaluations because students may be assessed by different instructors or on different

dates. An automated IP system, AutoGradebook, is under development to help

rectify these issues.

Previous research conducted by Forrest (2020) focused on automatically recom-

mending training programs through AutoGradebook in order to train pilots more

efficiently. This work builds upon the previous research by describing approaches

to identify students who may struggle with pilot training. If these students can be

identified early in training then IPs may intervene with training regimens intended to

rapidly develop their skills to a baseline level and prevent regressions in performance.

Training regression is defined here as occurring when pilot student proficiency in
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a task recedes. An IP may notice such regression and plan subsequent training events

to reverse the regression. An automated regression notification system can detect the

regression in training and cause the automatic training program scheduler to include

requisite training events to counter the regression. The primary research objective in

this work is to determine whether such an automated regression notification system

is possible for the PTN program. More specific research questions include examining

which regression detection methods might be useful for PTN, determining whether the

data collection methods and data employed in PTN support the regression detection

task, and what are the paths to implementation of a regression detection tool.

The remainder of this thesis is organized as follows. Chapter II provides a liter-

ature review of topics pertinent to recommending and scheduling training programs

and detecting regressions in performance. Various automated systems, statistical

methods, and psychological phenomena are discussed. Chapter III describes the ana-

lytical techniques that were applied to the PTN data as well as techniques that could

be employed with additional data. Chapter IV provides insights and suggestions to

improve the PTN program.

2
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II. Literature Review

2.1 Individualized Training

Individualized training programs are tailored to the needs of each student. Stu-

dents in individualized training programs spend less time on topics they are already

proficient in. This time savings can provide them with more time to develop their

weaker skills or allow them to proceed to more advanced topics. These individualized

programs can allow strong students to graduate earlier than they would in traditional

training programs while also increasing the likelihood that weaker students are able

to complete training.

Individualized education systems have been used to help students succeed in Amer-

ican schools for decades Betrus (1995). They have also been embraced by the private

sector to help meet a variety of ends such as personal fitness training. Technological

advancement has made individualized education and training even more viable by

reducing the amount of instructor engagement that is required or even eliminating

it entirely in some cases. Various commercial language learning applications, such

as Duolingo use automated methods to suggest and create individual study plans

Settles and Meeder (2016). Individualized training programs are also becoming more

common throughout the government and military with the goals of reducing costs

and improving training quality Manacapilli et al. (2011).

The main drawbacks of individualized training are the amount of time required

by instructors and the number of instructors required for multiple students Betrus

(1995). An instructor of a traditional education program may serve several students

while an instructor for an individualized program may only have bandwidth for a

few students. This means that an individualized training programs may have lower

throughput than a traditional program, despite their potential to train students more

3
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quickly. Automated systems can mitigate this problem by assisting instructors in the

development of training programs or identifying student performance patterns.

2.2 Cognitive Psychology

Various psychological phenomena may be pertinent to developing individualized

training regimens. The learning curve, the forgetting curve, and the spacing effect

were first described by Ebbinghaus in 1885 Ebbinghaus (2013). Learning curves

relate an individual’s proficiency at a task to the amount of time spent on the task.

Forgetting curves relate an individual’s memory of a task to the time elapsed when

they are not training on the task. Memory retention declines exponentially according

to the forgetting curve model. However, these forgetting curves become less steep with

increasingly spaced repetitions of learning events. This phenomenon is the spacing

effect.

Forgetting curves and the spacing effect form the basis of many learning programs

and memory models. The Leitner system is commonly used method for studying

flash cards wherein material that is commonly missed is reviewed more frequently than

material that is well known Leitner (2008). Duolingo, a language learning application

and company, has developed an individualized model to estimate the half life of words

or concepts for their students Settles and Meeder (2016). Others have developed

models to produce review schedules that maximize an individual’s learning rate Reddy

et al. (2016). Air Force Research Laboratory (AFRL) researchers have developed a

model to prescribe training regimens to meet a variety of goals, such as achieving a

target level of performance by a specified date or minimizing the number of training

events required to maintain proficiency through a specified date Jastrzembski et al.

(2013). Adaptations of these models may be particularly useful for tracking student

proficiency and developing pilot training regimens that deter regression in student

4
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capabilities.

2.3 Machine Learning

Machine learning (ML) is a branch of artificial intelligence concerned with design-

ing systems that are able to learn from experience Kirk (2017). In contrast to math-

ematical and statistical models which are built on fixed equations, machine learning

models may not assume a particular relationship between inputs and outputs. This

allows use of machine learning algorithms for a variety of real-world tasks that are

too complex for purely statistical methods. There are three types of machine learning

algorithms: supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is used to make inferences about an unobservable item of

interest (output) based on a set of related observations (inputs). The goal of a

supervised learning problem is to create a function that accurately maps inputs to

the output. There are two types of supervised learning problems which are based

on the data type of the output. Classification problems deal with categorical output

while regression problems (not to be confused with regression in performance) deal

with continuous output.

Unsupervised learning is used to identify the hidden patterns and salient features

within a data set, yielding a greater understanding the data. Common unsupervised

learning goals are clustering and dimensionality reduction. Clustering is used to

partition data into related groups (clusters). Items within a cluster have a stronger

relation to each other than to items in any other cluster. Dimensionality reduction

techniques are used to reduce the size of a data set in a way that retains information

that will be conducive for future analyses. Dimensionality reduction may also be used

for data visualization, making large data sets easier to interpret.

Reinforcement learning is used to teach autonomous agents to perform well in

5
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sequential decision-making problems under uncertainty. Performance at each decision

epoch is quantified via a reward, a function of the agent’s decision and its current

environment. The overall goal is for the agent to learn a decision-making policy that

maximizes the total reward it accrues over all decision epochs. In other words, the

agent must learn the long-term impacts of its decisions to be successful.

Of the ML applications discussed, both types of supervised learning algorithms

appear pertinent to developing systems to mitigate performance regressions during

PTN. Using supervised learning to classify students into learning profiles early in

training should help IPs develop better training programs. If students can be classified

into categories such as “likely to wash out”, “likely to regress”, “late bloomer”, or

“high performer” then IPs may intervene where appropriate to ensure that students

maintain standards of performance. A more direct approach is using supervised

learning to model students’ performance scores over time as a regression problem. If

accurate performance models can be developed, then these models may be used to

predict when a student starts to regress and the particular subjects or skills that the

students are likely to regress in.

2.4 Recommender Systems

The space of training options for a student in PTN is large and difficult to evaluate.

There are over 100 individual maneuvers a student pilot may be graded on a smaller

subset of these maneuvers comprise each individual training exercise. Instructor pilots

manually select these smaller sets of maneuvers based on each student’s performance.

This is an inordinately time-consuming process, so an automated system to suggest

training events would be highly beneficial. Various computer-based options such

as recommender systems can integrate previously recorded user data to generate

suggestions automatically Ekstrand et al. (2011). Such recommender systems have

6
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been utilized by companies like Amazon to immense commercial success Koren et al.

(2009) Smith and Linden (2017). The incorporation of recommender system into the

AutoGradebook should substantially reduce the amount of time instructors spend on

creating and evaluating training profiles, giving them more time to train and mentor

students.

A recommender system, also sometimes called a recommendation engine, is an

information system that examines data associated with some performance of interest

and uses that data to make recommendations for future performance. For instance,

when using Amazon to purchase books, an underlying recommendation engine will

suggest other, similar books to consider purchasing. As computer systems have im-

proved and pattern recognition algorithms have matured, recommender systems have

grown in accuracy and use.

A common recommendation generation method is collaborative filtering which

utilizes prior user behavior to predict their future actions. It is based on the simple

assumption that similar users should be given similar recommendations. Two suc-

cessful collaborative filtering approaches are latent factor models and neighborhood

models. Latent factor models are able to capture trends indicated weakly by many

data points while neighborhood models are able to identify trends indicated strongly

by only a few data points. A combination of these approaches may also be used to

improve predictive accuracy Koren (2008).

Other data driven techniques have been shown to be practical in industry. Least

squares and k-nearest-neighbor techniques are two commonly applied, simple, yet

powerful methods for data classification and prediction and form the basis for other

more advanced models Hastie et al. (2009). More advanced techniques such as ma-

chine learning may also be useful. Neural networks in particular are effective for

modeling and predicting time-series data generated by biological entities Patterson

7
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and Gibson (2017).

A combination of classification, recommendation, prediction approaches seems ap-

propriate for the AutoGradebook due to its unique operational environment. Typical

commercial recommender systems seek to identify and remove outlier users from the

data as their presence can lower the overall quality of recommendations Srivastava

et al. (2020). Rather than simply removing students with atypical performance pat-

terns from the data pool, the AutoGradebook should classify them separately and

generate individualized recommendations and predictions. Incorporating these ca-

pabilities could enable instructors to detect students’ skill deficiencies sooner and

facilitate the development of a more effective individualized pilot training program.

8
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III. Methodology and Analyses Employed

3.1 Data Description

Each row of the raw PTN data consists of columns which indicate the student pilot

(SP), the flight maneuver being conducted, the category of the maneuver, whether

the flight was conducted live or in a simulator, the date of the flight, and the SPs

grade for the maneuver as assessed by the IP. An abbreviated example of the raw

data format is shown in Table 1.

Table 1. PTN Raw Data Example

Student Maneuver Flight Type Date Grade

INDIE11 Aileron Roll Flight 2019-04-10 S

INDIE11 Barrel Roll Flight 2019-04-10 G

INDIE11 Immelmann Sim 2019-04-12 U

INDIE27 Aileron Roll Sim 2019-04-19 E

INDIE27 Barrel Roll Sim 2019-04-25 F

INDIE27 Immelmann Flight 2019-04-25 G

The maneuvers and their categories are shown in Table 2. As easily discernible

from Table 2, pilots train for many maneuvers and clearly not every maneuver is

found in every training event.

Table 2. PTN 2 Maneuvers by Category

Category Maneuvers

9
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4 Ship Formation

(4S)

Box Formation, 4S Tactical Maneuvering, 4S Mu-

tual Support / Flight Integrity, 4S BD Check,

Wall, 4S Fingertip, 4S Admin, 4S Turning Re-

join, Offset Box, 4S Straight Ahead Rejoin, Fluid

4

Admin Task Management, Fuel Awareness / Manage-

ment, Inflight Checks / Checklist Usage, Mis-

sion Planning / Briefing / Debriefing, Risk Mgmt

/ Decision Making, General Knowledge, Take-

off, Inflight Planning, Clearing / Visual Look-

out, Basic Aircraft Control, Flight Discipline,

Situational Awareness, Ground Ops, Emergency

Procedures, Divert/Contingency Planning, Cross-

Check, Communication, Mission Analysis/Prod-

ucts, Mission Management, Enroute Descent /

Recovery, Departure

10
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Basic Formation (2S) 2S G-Warmup / Awareness, 2S Breakout (Wing),

Formation Landing (Both), 2S Echelon (Wing),

2S Fighting Wing (Wing), Route (Wing), Flight

Split (Wing), Extended Trail (Wing), Lead Plat-

form, Formation Approach (Both), Instrument

Trail, Extended Trail (Lead), 2S Position Change,

Lost Wingman (Both), Straight Ahead Rejoin,

Overshoot, Pitchout (Both), 2S Interval Take-

off, Turning Rejoin, 2S Battle Damage Check,

Wing Takeoff, 2S Fingertip (Wing), Flt Integrity

/ Wingman Consideration

CAF Advanced Air

to Air Operations

Intercept to Position of Advantage, BVR/WVR

Mutual Support, Engaged / Defensive / Mutual

Support Maneuvering, Roles Establishment and

Contract Adherence

CAF Air to Sur-

face Weapons Em-

ployment

SA Safe-Escape Maneuver, SA Pattern Ops: Div-

ing Deliveries (Conventional), Tactical Weapons

Deliveries - Unguided, Tactical Weapons Deliver-

ies - Guided, SA Pattern Ops: Diving Deliveries

(Tactical), SA Conventional Range, SA Tactical

Range Proc, CAF Air to Surface Error Analysis

11
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CAF Intro CAF Fuel Awareness / Management, CAF Sim

Single Engine Go Around, Weapons Employment,

ROE Adherence, HUD OFF-Normal Landing,

Sensor Set up (AA & AG Radar, TPod, DASS),

CAF Heavy Weight Touch and Go, FENCE, Pro-

grammable Armament Control System Set up,

CAF Sim Single Engine St-in Landing, CAF

Heavy Weight Considerations

CAF Introduction to

Air to Air Operations

Heat to Guns Maneuvering Offensive, Long Range

Offensive, CZ Recognition, Reversal Scissors Ex,

Heat to Guns Maneuvering Defensive, HA BFM

Flt Analysis, Air to Air Weapons Employ, Jink

Exercise, HA Butterfly Setups, Short Range Of-

fensive, Long Range Defensive, 1/4 Plane Ex, AA

WEZ Recognition, Maneuver Mechanics/Execu-

tion, Range & Pursuit Curve Ex, Turn Circle

Analysis, Short Range Defensive, Advanced Han-

dling, HA Lead Turn Exercise, Perch Setups

CAF Surface Attack

Tactical Operations

Surface Attack Prioritization, Air to Ground 2-

ship Mutual Support, Low Alt Formation Mu-

tual Support / Contract Adh, CAF SA Threat

Reactions, Low Alt Tactical Holding, CAF TAC-

S/JFIRE Procedures, First Run Attack, Surface

Threat Awareness, Low Alt Systems Reprogram-

ming

12
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Contact/AHC Contact Recoveries, Immelmann, TP Stalls, Bar-

rel Roll, Slow Flight, Pitchback / Sliceback,

Cuban Eight, ELP Stalls, Power On Stalls,

Stall Awareness / Recoveries, G-Awareness, Lazy

Eight, Cloverleaf, Loop, Spin Recovery, Aileron

Roll, Split S

Instruments Missed Approach, Unusual Attitudes, ASR/PAR

Approach, Night Navigation, Precision Final,

Holding, Non-Precision Final, Vertical S, Non-

Precision Final (VOR/TCN), Intercept / Main-

tain Arc, Penetration Approach, RNAV Final,

Steep Turns, Night Landing, Off Station Ap-

proach, Intercept / Maintain Course, Fix to Fix,

Circling Approach, Full Procedure Approach

Low Level (LL) LL Altitude Control, LL Lead Change, Course

Entry, Low Alt Maneuvering, Route Abort / Low

Level Exit, Checkpoint ID, LL Course Mx, LL

Fighting Wing / Wedge, Ridge Crossing, LL GPS

Integration, LL Tactical Maneuvering, Time Con-

trol

MAF/SOF Intro Crew Coordination, MAF/SOF VFR Arrival, Pi-

lot Monitoring, Tanker Procedures, Airdrop Pro-

cedures, Crew Resource Management, MAF/SOF

Mission Management

13
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Patterns Go-Around, Pattern Night Landing, Overhead/-

Closed Pattern, Landing, Visual St-In, No Flap

Landing, SFL, Emergency Landing Pattern

Tactical Formation

(TAC)

FM Level 1, Delayed 90, Shackle, 2S Tac Lead

Platform, Tac Position (Wing), 2S Tac Straight

Ahead Rejoin, 2S Tac Position Change, Cross

Turn, 2S Tac Shackle, Fluid Maneuvering, 2S Tac

Turning Rejoins, Fluid Turn, Delayed 45, 2S Tac-

tical Maneuvering, 2S Tac Hook Turn, Tac Initial,

FM Level 2

VFR Flight VFR Arrival, VFR Navigation

Students are graded on a four-letter system by instructor pilots with a minimum

score of Good being required to pass any maneuver. These grades and their numerical

equivalents are shown in Table 3. The numerical equivalents are used to compute

a metric called the cumulative maneuver item file (MIF) by summing the maximum

score a student has achieved for each maneuver. This metric is used by IPs to assess

the overall progress of students during pilot training. Using the Cumulative MIF

as the primary measure of progress introduces problems with respect to training

regression detection and mitigation goals. These are discussed in the next chapter.

Table 3. PTN Grading Scheme

Grade Meaning Points
E Excellent 4
G Good 3
F Fair 2
U Unsatisfactory 1
NG Not Graded 0

The data set was partitioned by student and transformed with a pivot table.
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This yielded student data tables with a row for every day the student completed a

training exercise and columns for their scores in each maneuver conducted in that

training exercise. Thus, each maneuver column is a time series of scores. However,

the measurement intervals for these series are irregular due to students advancing at

their own pace and the fact that students complete only a subset of the maneuvers

during any training event. The implications of this are discussed below. An example

of the student data table format is shown in Table 4. Note that students do not

perform every maneuver during particular training events. There may also be gaps

of varying length between maneuvers occurring within a students’ training events.

Table 4. PTN Transformed Data Example

Date Aileron Roll Barrel Roll Immelmann Landing Takeoff

2019-05-01 0 3 2 3 3

2019-05-04 4 3 0 2 4

2019-05-06 4 4 3 4 3

2019-05-09 3 0 3 3 3

2019-05-10 3 0 0 3 3

2019-05-15 0 3 4 3 2

PTN does appear to have structure with respect to the scheduling of graded train-

ing events, despite the self-paced nature of student progression through pilot training.

Students typically spend the first two months of training on maneuvers from the Ad-

min, Contact/AHC, Instruments, and Patterns categories. Admin maneuvers are

conducted during nearly every training event for the duration of training campaign.

Maneuvers from the latter three categories mentioned are basic skills that are built

upon by maneuvers from the remaining categories. The more advanced maneuver

categories are introduced after students demonstrate competence in the basic sets
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of maneuvers. Some students were not introduced to certain advanced maneuver

categories which suggests that students are classified into different training groups

(perhaps for specialized pilot training) midway through PTN.

3.2 Early Insights

This data set has various issues that inhibit analysis and model building for the

current purposes associated with detection of training regression. These issues are

due to the metrics used by PTN leaders and PTN’s unique operating environment

when compared to traditional training programs. These issues are discussed here and

recommendations to address them are discussed in Chapter 4.

First, maneuvers are scored on an ordinal scale rather than an interval or ratio

scale. This means differences between scores are not quantifiable. For example, it is

not clear whether moving from Excellent to Good is as significant as moving from Fair

to Unsatisfactory despite these both being one point decrements. Additionally, the

low granularity and subjectivity of this scoring system makes it difficult to determine

whether any one point change in score can be attributed to a meaningful change in the

student’s performance level. These factors make determining whether performance

regression has occurred difficult.

Next, the cumulative MIF metric does not necessarily correspond to a student’s

current level of performance since it is based on the maximum of all recorded scores for

each maneuver. For example, if a student received an Excellent in Decision Making

during week 10 and an Fair in Decision Making during week 20 then their cumulative

MIF during week 20 would be based on the Excellent they received previously. Thus,

cumulative MIF is not a useful indicator for regression recognition. MIF can also

be ambiguous when used to compare students since MIF does not account for the

breadth of training received. For example, two Excellents in separate maneuvers is
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worth the same number of points as four Fairs. Thus, comparisons between students

who have been exposed to differing numbers of maneuvers can be misleading.

Finally, the time series for each maneuver has missing data due to the nature

of PTN and the large number of potential maneuver choices used to create each

individualized training event. There are more than 150 individual maneuvers, so it

is not possible to perform every maneuver during each training event. This yields a

sparse time series which must be imputed in order to use certain multivariate time

series analysis techniques. This data sparcity issue can be alleviated somewhat by

grouping maneuvers by categories and/or excluding some maneuvers from analysis.

However, series other than Admin, Patterns, and cumulative MIF are still sparsely

populated.

The analytical techniques that were applied to the PTN data are discussed in the

following section. These techniques were unable to provide meaningful predictions

about a student’s performance. Thus, they do not identify early indicators that a

student may regress in performance. The discussion focuses on the shortcomings of

the techniques that were applied and on ways that the PTN data compilation may be

improved for future cohorts to facilitate the automatic detection of training regression.

Modeling techniques that could be applied with supplementary data are discussed in

Chapter 4.

3.3 Applying a Visual Analytical Technique

A simple approach using only cumulative MIF to stratify students is easy to

implement and may help IPs identify potential wash outs. The plot in Figure 1

displays the cumulative MIF accrued by each student in PTN cohort 2 against the

day of training. The median cumulative MIF for the students still in training on a

given day was subtracted off to provide a better picture of their current standing in
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the cohort. Students’ scores are colored with a green to yellow to red gradient based

on their final cumulative MIF accrued. Green is used to indicate the stronger scores,

red the weaker scores, and yellow the scores more toward the average performer.

Figure 1. Adjusted cumulative MIF for each student in Cohort 2.

Stratification of the cohort is apparent within the first 50 days of training. A

student that leaves training, or washes out, is indicated with the truncated line before

PTN completion. The students who washed out were generally below the median

during the first 50 days. Similarly, many of the students who finished PTN with the

highest cumulative MIFs were above the median. However, there are a few notable

exceptions to these trends. In particular, the student with the highest cumulative MIF

at the end of training, INDIE17, spent most of the first 50 days of training below the

median. Nevertheless, consistent performance below the median cumulative MIF at

the beginning of PTN appears to be an early indicator that student is more likely to

wash out.
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While intuitive, this visual approach does not lend itself to automatic detection

or prediction of training regression. It is not possible to determine whether a student

is regressing from their total MIF alone because the metric is based on only their

maximum recorded grades. As shown in Figure 2, a student’s cumulative MIF over

time is a monotonic increasing function characterized by periods of relative stagnation

followed by sharp increases corresponding to the introduction of new maneuvers. A

long period of decreases in the previous plot or stagnation in the following plot may

be due to a student taking longer to master new concepts, rather than regressing in

their capabilities on previously introduced concepts.

Figure 2. Student cumulative MIF over time for Cohort 2.

3.4 Applying Vector Autoregression

Detecting and predicting training performance regression is a complex task. If

different maneuvers are interrelated, then a student’s performance in one maneuver
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may be indicative of their performance in others. Vector Autoregression (VAR) was

chosen as a potential modeling technique because it relates multiple time series to

each other and directly predicts variables values. More precisely, given a multivariate

time series, the future values of each variable are modeled as linear combinations of

previous variable values. Let yt be a column vector of variable values at time t. A pth

order VAR model is given by the equation yt = c + A1yt−1 + + Apyt−p + et where p

is the number of previous time steps to include, Ai is a k× k coefficient matrix, c is a

vector of constants, and et is a vector of error terms. A variable trending downward

in successive predicted time steps could be an indicator that a student will regress in

their training performance.

A VAR model was constructed for each student using the Statsmodels Python

package. First, a student’s data is partitioned into a training set and a validation set.

Columns corresponding to maneuvers that were not performed during the training set

are removed from both the training and validation sets since values for variables that

were not observed cannot be modeled with VAR. Any missing data were imputed via

linear interpolation. For example, suppose a student conducted Emergency Proce-

dures during their first and third training events, but did not conduct them during

their second training event. If the student’s numerical scores for their Emergency

Procedures were 3 and 4, respectively, then their score for their second training event

would be imputed as 3.5. Next, a backward moving average based on five point win-

dow was used to smooth the data. Time step-wise differencing was used to remove

the increasing trends in the data. This ensured that the variables are stationary, a

requirement for VAR. A VAR model was then fit to the differences.

Forecasts from this VAR model are predictions on whether the students score for

a particular maneuver will increase or decrease. Therefore, a large negative value or

sequence of negative values in the forecast is a prediction of training performance
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regression. These forecasts may be transformed back into scores by adding the final

vector of scores in the training set to the cumulative sums of the forecast differences.

The images in Figures 3 - 6 show the performance of a VAR model built on 60 training

sessions of data.

Figure 3 shows the predictions for the differenced data against the actual dif-

ferences. The VAR model did not yield meaningful predictions. The shape of the

predictions is quite dissimilar to the observations. In particular, the model predicted

that the student’s score would decrease more frequently than it actually did.

Figure 3. The VAR model was a poor fit for this student’s Situational Awareness.

Figure 4 shows the predictions after converting back to scores. The errors in

the predictions cascaded, producing an unrealistic series of scores. This was the

typical behavior across all maneuvers; the converted predictions tended to have a

large upward or downward trend.
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Figure 4. Converting the differences back into scores can produce infeasible results.

Figure 5 shows the predictions for Task Management. The predictions for this

maneuver are much closer to the observations than those in Figure 3. Several of

the early predictions are correct with respect to predicting an increase or decrease.

However, the magnitudes of the predictions are still off in many cases.
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Figure 5. The VAR model predicted early score increases and decreases.

Figure 6 shows the converted Task Management predictions. The model predicted

the decreasing scores that occurred between training sessions 65 - 75, and the inflec-

tion that occurred near training session 78. This is the only instance of a trend

in this student’s data being correctly predicted by the VAR model. However, this

interpretation is dubious given the poor performance for every other maneuver.
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Figure 6. The model has dubious performance for this maneuver.

VAR had poor predictive performance for the PTN data set. There are several

weaknesses and limitations of the VAR model which make it unsuitable for modeling

human performance in the current context. Many students performed poorly on

certain maneuvers during the first few months PTN, corresponding to the training

portion of their data set, but improved dramatically by the end. This is reflective of

the learning process. Students improve with practice and coaching. However, there

is nothing to drive this behavior in the VAR model as it does not take studying,

learning, or other human factors into account. Additionally, the sparsity and low

granularity of the PTN data set makes identifying students’ gradual knowledge and

skill acquisition challenging to model and predict.

Another weakness of the VAR model is that the forecasts it produces are based

solely on previous variable values. When forecasting several steps into the future,
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later predictions are computed based on previous computed predictions. This causes

errors to cascade and can lead to wildly inaccurate, or even implausible predictions

over multiple time steps. However, the VAR model does not tend to predict large

increases or decreases for a variable within a single time step. The combination of

these factors makes accurately predicting training regression in the PTN difficult as

maneuver scores can in fact change drastically between training events.

There are also practical concerns when using VAR and similar statistical regression

models. A model must be constructed for every individual student pilot to generate

performance forecasts. Then, additional processing on the forecasts must be used to

determine whether performance regression is likely. This process is computationally

expensive, although it may be worthwhile if a method to generate more accurate

performance forecasts is found.

3.5 Applying a Long Short-Term Memory Recurrent Neural Network

The final analytical technique applied was a long short-term memory (LSTM)

recurrent neural network (RNN). In contrast to the autoregressive models, RNNs can

be used to predict values of various types of explanatory variables (e.g. categori-

cal responses). RNNs also allow use of additional explanatory variables to predict

the responses of interest. These features were leveraged to incorporate the gaps in

manueuver consideration between successive training events and to make use of binary

(pass or fail) predictions for maneuvers included in any of the training events.

Neural networks (NN) are machine learning algorithms that are loosely based on

the hypothesized functioning of the human brain. They may be represented as a

directed graph comprised of nodes which are organized in layers and weighted edges

to connect the nodes. Every NN consists of a input layer, at least one hidden layer,

and an output layer. Each node computes a weighted sum of its inputs then passes
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the sum through a user-specified activation function to produce an output. These

output values are then passed on as inputs for the next layer. The value(s) in the

output layer is(are) a response prediction based on the input and the edge weights

which are tuned algorithmically for a user specified number of epochs in a process

known as training or learning.

RNNs contain edges which connect nodes back to nodes in the previous layer,

allowing information persistence. This makes RNNs useful for sequential and time-

series data. However, standard RNNs gradually forget what they have learned over

several time steps, making them unsuitable for certain tasks. This problem is rectified

by LSTM networks. LSTM networks are RNNs with additional components which

help the network learn context based, long-term time dependencies from the input

data.

LSTM models were constructed according to the following process based on using

the Keras Python APIs. The first few data preparation steps are the same as those

performed for VAR. First, student data are partitioned into a training and validation

set. The partition is based on event timing; early data are in the training set and later

data are for validation. As before, columns for those maneuvers not conducted during

the particular training event are dropped. Missing data points were then imputed

with linear interpolation. Two additional features were created to help make use

of RNN capabilities and capture behavior that the VAR model could not capture.

The first feature, “Training Lag”, is the number of days since the previous training

exercise. This feature was incorporated to implicitly model forgetting curves. The

second additional feature dubbed “Skill” was intended to help model the increasing

“Skill” at each time step and was computed as their cumulative MIF at each time step,

normalized by dividing by 200. This normalization process produced a monotonic

function with a similar range found with the other features. Finally, a backward
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moving average based on five point window of data was used to smooth all features

except the training lag.

A RNN was built to predict maneuver scores for one time step ahead based on

features from 15 previous time steps. The RNN was composed of an input layer, one

hidden LSTM layer, and an output layer. Let N be the number of maneuvers that

are in the prepared data. The input layer contained 15(N + 2) nodes, one for each

maneuver and the two created features, Training Lap and Skill, at each of the 15 time

steps. The LSTM layer contained N + 2 nodes. The RNN transformed inputs into a

vector of N outputs, one for each maneuver being predicted. The images in Figures 7

- 11 show the performance of the LSTM model for different learning durations.

Figure 7 shows the the model fit to the training data based on 100 epochs of

learning. This model was trained for too few epochs, hence the poor fit to the training

data.
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Figure 7. The model needs more learning epochs to fit the shape of the data.

Figures 8 - 9 show the fits to both the training and validation data based on 300

epochs of learning. The model has begun to fit the overall shape of the training data

well. The performance for the validation data is quite poor, however. There is little

correspondence between the shape or magnitude of the observed data and the model’s

predictions.
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Figure 8. The model is a good fit to the training data with 300 epochs of learning.
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Figure 9. The model is unable to capture trends in the validation data with 300 epochs.

Figures 10 - 11 show the fits to both the training and validation data based on

500 epochs of learning. The model fits the training data well. The performance for

the validation data is still quite poor.
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Figure 10. The model still fits to the training data with 500 epochs of learning.
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Figure 11. The fit to the validation data is not improved at 500 epochs.

The LSTM network models the training data well. However, it does not generalize

well to the validation data. Table 5 shows that the mean squared error (MSE) for

training predictions improves with additional learning epochs, while the validation

MSE does not. This suggests that the data used is not sufficient to directly model

PTN performance and that the models are overfit to the training data.
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Table 5. Validation performance does not improve with more learning epochs.

Epochs Training MSE Validation MSE

25 0.0600 0.0533

50 0.0515 0.0624

100 0.0395 0.0572

200 0.0214 0.0689

300 0.0182 0.0731

400 0.0153 0.0765

500 0.0115 0.0718

Another RNN was built to predict binary (pass or fail) scores for each maneuver

rather than the numerical scores. In addition to the data manipulation steps described

previously, a new data set was created with scores below a value of three transformed

to 0 (fail) and scores at three or above transformed to 1 (pass). The original data

was then used to predict this new, binary data set. Predictions from this model may

be viewed as the probability that a student will pass a maneuver in the following

training session.

Figures 12 and 13 show fits to the binary training and validation data. The

performance is quite good for the training set with peaks and troughs that correspond

to the respective passes and failures in the data. However, there is no discernible

pattern to the predictions for the validation data.
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Figure 12. Modeling a binary response requires fewer learning epochs.
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Figure 13. The binary model does not fit well to validation data.

This binary response-based RNN model suffers from similar issues to the previous

RNN model. It can model the trends in the training data, but it performs poorly in

validation. In particular, although there are fewer instances of failure in the validation

set than in the training set, this model is still unable to predict the failures that do

occur.
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IV. Conclusion

Accurately predicting performance regressions among Pilot Training Next (PTN)

student pilots (SPs) is a complex task due to the inherent difficult in modeling hu-

man behaviors and performance. A wide variety of physical, psychological, and emo-

tional factors affect a pilot’s flying skill. Every flight event tests a pilot’s memory,

situational-awareness, decision-making, workload management, and teamwork in ad-

dition to their ability to control an aircraft. However, the quantitative data collected

during PTN is ambiguous and limited in scope. These issues make it difficult to

model the volatile early stages of PTN when SPs are still developing competency.

Improving the quality of data collected by PTN and collecting additional types of

data will help enable the development of models that can more accurately predict

performance regression.

PTN’s current grading system does not provide insights as to why individual

grades were given for training maneuvers. A student may receive a grade of Fair for a

variety of different reasons. Thus, a sequence of Fairs in a particular maneuver does

not necessarily indicate that a student has failed to grasp a fixed set of concepts. It is

possible that students made progress in these areas while also regressing on subjects in

which they previously demonstrated proficiency. Performance regressions that occur

in this manner cannot be detected or predicted with the current data. Additionally,

PTN’s four letter grade scale is not sufficient to accurately track performance of the

highly multifaceted flight maneuvers that SPs conduct. A student may show gradual

improvement in all facets of a maneuver while progressing between letter grades,

but this will not reflect in their numerical data until their grade suddenly jumps.

Similarly, if a student lapses in performance of one or more facets of a maneuver then

their score may suddenly drop. However, a simple drop in score may or may not be an

actual cause for concern. These ambiguities make it difficult to model student scores
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over time and to detect meaningful performance regressions at the maneuver level. A

grading system with more specificity and granularity will alleviate these problems.

The PTN grading scheme can be improved by incorporating a rubric that specif-

ically shows what the SP did well or poorly during each maneuver. Instructor Pilots

(IPs) frequently leave text comments with some of this information, but there is no

quantitative data provided. A rubric will provide data to link the maneuvers and

more context for performance regression predictions. For example, poor performance

in a set of maneuvers may be linked by a common factor such as communication skill

or ability to maintain airspeed. Incorporating specific information in this manner

will also increase the granularity of the data, allowing for more accurate tracking of

students’ skill levels for specific maneuvers. Moreover, if a set of factors that are per-

tinent to every maneuver can be determined, then a common rubric can be used for

every graded training session, regardless of the maneuver(s) being conducted. This

will allow student performance models to be constructed based on these factors rather

than on individual maneuvers or groups of maneuvers. These factor based models will

be faster due to using fewer variables and will not require data imputation because

all factors will be observed in during each training event. The tabular form of the

provided data can accommodate the additional data by simply adding one column

per factor identified on the common rubric.

A psychological model may be most appropriate for predicting performance for

specific flight maneuvers. Models built on psychological principles incorporate the

temporal distribution of study and training events to predict performance. There

may be long gaps between a SP’s completion of certain maneuvers and a memory

model may be used to estimate the amount of skill decay they will experience be-

tween events. A steep forgetting curve for a maneuver is indicative that a student is

likely to regress in performance quickly. Psychological models models are also useful
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to accelerate learning and encourage long-term knowledge retention (i.e. deter re-

gression). Such models may be particularly useful when used in conjunction with the

previously developed training recommendation system to determine the date for the

recommended training event.

To conclude, the following course of action is recommended to make PTN’s data

more conducive to achieving its leaders’ goals. Identify a set of factors that are

common to most, if not all flight training events and use them to construct a grading

rubric. Events from the admin and instruments categories would make a solid starting

point in determining these factors. Some events may need to be specified further

(e.g. basic aircraft control which may encompass several factors) or combined into a

generalization (e.g. certain instruments and situational awareness). Incorporate data

from simulators and any flight data recorders to the greatest extent possible. Data

from flight simulators may be leveraged to quantify SP performance, giving more

objectivity to evaluations by their IPs. Statistics such as deviations from expected

altitude, pitch, or air speed may be useful for computing scores related to aircraft

control factors. Scores for factors like checklist usage may be computed as the ratio

of correctly executed items to total items executed. When computational metrics

cannot be used and an ordinal score must be assessed, ensure that the levels of the

grading scale are mutually exclusive and collectively exhaustive. This will ensure that

scores are unambiguous. The overall score for each maneuver may then be computed

as a weighted average of each factor score.
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The initiative to reduce the Air Force’s serious pilot shortage lead to the Pilot Training Next (PTN) program. Under
PTN, student pilots progress at an individual rate while making increased use of simulator-based training resources. A
previous thesis used data from the first PTN class to conceptualize and prototype a student training flight scheduler.
This scheduler did not consider training events required to bring students back to achieved levels of performance if in fact
that student performance had regressed. This thesis examines three classes of PTN student data to determine whether
student regression in training progression can be detected. A visual and two machine learning-based methods are
examined and found to not predict training regression in PTN student pilots.
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